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Despite enormous effort, promising pre-clinical data in animal studies and over 900 clinical trials in the
United States, no cancer vaccine has ever been approved for clinical use. Over the past decade a great deal
of progress has been in both laboratory and clinical studies defining the interactions between developing
tumors and the immune system. The results of these studies provide a rationale that may help explain
the failure of recent therapeutic cancer vaccines in terms of vaccine principles, in selecting which tumors
are the most appropriate to target and instruct the design and implementation of state-of-the-art cancer

vaccines.

. Introduction

Cancer is a disease arising from a prolonged period of genetic
nstability that extends the lifespan of a normal cell. The trig-
ering event that marks the beginning of this period is variable
etween cell types, but is commonly the acquisition of a mutation

n a tumor suppressor gene (such as p53 or Rb), a mutation in a
roto-oncogene (such as KRAS or myc) or infection of the cell with
n oncogenic virus (such as HPV16 or EBV). Whatever the origin,
ells that acquire mutations in genes that enable them to escape
ormal growth controls or cell death pathways then become more

ikely to acquire additional such mutations. At some point a cell has
cquired enough mutations, typically thought to be at least six, that
t is no longer responsive to intrinsic or extrinsic signals that would
estrain its growth or trigger apoptosis. Although it may sometimes
e the case that a very small number of mutations are sufficient to
ransform cells, recent analysis of the genetic makeup of human
umors by The Cancer Genome Atlas suggests that it is far more

ommon that a tumor contain several dozens of mutations than
ust a handful [1–4].

Because tumors arise from our own cells, our bodies’ immune
ystems are initially tolerant to those cells. The acquisition of
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tumorigenic mutations may or may not lead to the production of a
mutated protein containing an epitope that is sufficiently non-self
to become immunogenic. If a cell acquires an immunogenic muta-
tion, then it may be sought out and destroyed by the host immune
system, a process known as immunosurveillance [5]. A variety of
murine studies lend support to the immune surveillance hypothesis
[6–8] and also suggest that innate in addition to so-called adaptive
immune responses may facilitate rejection of immunogenic tumors
[9–11]. Such innate responses may be evoked through induced
expression of NK activating signals such as NKG2D ligand expres-
sion or following DNA damage incurred as a result of mutagenic
or viral processes. Some cells that acquire immunogenic mutations
also gain the capacity to engage normal immune regulatory sys-
tems that dampen anti-self-immune responses [12]. The pathways
driving the activation of host regulatory mechanisms are poorly
understood. Still other cells may gain a number of oncogenic muta-
tions without ever producing an immunogenic peptide that leads
to the activation of the host immune system. Therefore, tumor
cells that produce an immunogenic peptide during their transfor-
mation must continuously evade anti-tumor immune responses in
order to survive, whereas tumors that become transformed with-
out activating the immune system may not rely on such immune
regulatory mechanisms for survival. This phenomenon of variable
tumor immunogenicity has been largely ignored when designing
and testing cancer immunotherapeutics.
Cancer vaccines fall under a category of therapeutics known as
biological response modifiers (BRMs). Prophylactic cancer vaccines
such as Gardasil (Merck & Co.) and Cervarix (GlaxoSmithKline) as
well as a variety of therapeutic cancer vaccines, which have not
yet received FDA approval, fall into this category. Also included are

http://www.sciencedirect.com/science/journal/10445323
http://www.elsevier.com/locate/ysmim
mailto:epodack@med.miami.edu
dx.doi.org/10.1016/j.smim.2010.02.001
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Fig. 1. Differential interactions between immunogenic versus non-immunogenic
tumors and the immune system. Tumors develop within tissues and release tumor
antigens into local lymphoid organs. For immunogenic tumors (such as melanoma),
those antigens lead to cytotoxic T lymphocyte (CTL) activation and subsequent infil-
tration of the tumor by tumor-antigen specific CTL. The observation that many
immunogenic tumors develop in spite of such a response is evidence that immuno-
genic tumors develop regulatory characteristics that lead to resistance to tumor
cell killing by CTL. Non-immunogenic tumors on the other hand (such as NSCLC)
release antigens that do not efficiently prime an anti-tumor immune response, and
as a result such tumors need not develop regulatory mechanisms to counteract the
killing activity of tumor-antigen primed CTL. Therapeutic vaccination aims to prime
06 T.H. Schreiber et al. / Seminars

nnovative approaches that employ viral vectors or that augment
mmune cell activation in an attempt to directly lyse tumor cells
nd/or invoke an effective anti-tumor immune response. These lat-
er approaches do not necessarily introduce new tumor antigens,
nd therefore do not meet the definition of a vaccine, but much of
heir efficacy is considered to be due to immune activation through
process dubbed ‘vaccination in situ’. Therefore, the primary focus
f this review will be to review prophylactic and therapeutic can-
er vaccines currently in clinical development, but a discussion
f certain non-vaccine BRMs is also included where their use has
nstructed us as to the immunogenicity of certain tumors and the
equirement for combinatorial therapeutics.

. Tumor antigens and immunogenicity

For over a century there has been a struggle both within and out-
ide the scientific community in an effort to provide unequivocal
roof that the immune system is capable of identifying and elim-

nating spontaneous tumors [13]. This argument has been largely
imited to spontaneous tumors, whereas there has been general
greement that the immune system should be capable of recogniz-
ng tumors of viral origin. The crux of this disparity in consensus is
elated to whether or not spontaneous tumors ever gain sufficient
mmunogenicity via the acquisition of genetic mutations to break
mmune self-tolerance. Breaking self-tolerance is not an obstacle
or viral antigens implicated in virally induced cancers (because
iral antigens are inherently non-self), however the loss of depen-
ence of transformed cells upon those viral antigens for long-term
urvival [14–16] suggests that virally induced cancers should be
hought of simply as highly immunogenic tumors, rather than as a
eparate category.

There are two basic categories of tumor antigens: abnormal
elf-antigens (ASAs) and tumor-specific antigens (TSAs). ASAs are
ntigens that may be generated in a variety of ways including;
nduction of embryonal and developmental genes not normally
xpressed in most adult tissues, expression of normal proteins with
bnormal sugar moieties or expression of self-proteins at abnor-
ally high levels. TSAs result from spontaneous somatic mutations

r breaks in the germline DNA that lead to missense, frameshift
rrors in the open reading frame of normal mRNA transcripts or
o fusion proteins, respectively [17]. Not all such mutations alter
he immunogenicity of transformed cells however, because spe-
ific residues in mutated self-proteins must be flanked by anchor
esidues in order to facilitate loading onto the MHC. It remains
nclear what percentage of TSAs satisfy the requirements for MHC
inding. For breast and colorectal cancers however, epitope map-
ing based on the results of The Cancer Genome Atlas (TCGA)
stimated that approximately 10 and 7, respectively, TSAs are gen-
rated on average in individual tumors with appropriate anchor
esidues for MHC loading [18].

Large numbers of both ASAs and TSAs have been described
nd a useful database of these antigens is maintained by the
cademy of Cancer Immunology (http://www.cancerimmunity.
rg/peptidedatabase/Tcellepitopes.htm). In addition, TCGA has
ecently uncovered a multitude of potential antigens in pancreatic
denocarcinoma, glioblastoma multiforme, breast and colorectal
ancers. The comprehensive cancer genome sequencing effort led
y TCGA has provided enormous insight into both the heterogene-

ty and the potential number of TSAs both between and among
articular cancers. As was predicted by Hanahan and Weinberg, the

ost commonly mutated somatic genes are those that are involved

n the regulation of cell growth and death pathways (mutations
n proteins thought to be the ‘drivers’ of oncogenesis), however
n total there are far more so-called ‘passenger’ mutations scat-
ered throughout the genome of transformed cells [1–4,19]. The
the immune system against tumor antigens, so it is anticipated that such a response
will be more effective against tumors (non-immunogenic) that have not already
acquired an immune regulatory phenotype.

relative frequency of ASAs and TSAs is poorly understood, as is the
frequency of shared mutations between individual patients. Both of
these questions are critical to the logical design of cancer vaccines
intended to treat a large number of patients with a similar cancer,
let alone patients with unrelated tumors.

Equally important to the availability of ASAs and TSAs for incor-
poration into vaccination strategies is a recognition of which of
these antigens have already led to the activation of T cell immunity.
Tumors that commonly induce spontaneous anti-tumor immune
responses, engage immunosurveilling T cells and still develop in
spite of these responses, are thought to express ASAs and TSAs and
are considered immunogenic tumors. A surrogate marker for the
overall immunogenicity of a tumor is the presence of tumor infil-
trating lymphocytes (TILs). The presence of TILs indicates that the
tumor microenvironment is permissive for leukocyte trafficking
and extravasation. Importantly, ex vivo cytotoxicity assays utilizing
purified TILs demonstrates that in many cases TILs are tumor-
antigen specific and have no intrinsic deficits in cell-mediated
cytotoxic functions [20,21]. Since the objective of a cancer vac-
cine is to induce tumor-antigen specific T cell responses that are
capable of killing tumor cells, we must ask ourselves whether
patients with immunogenic tumors bearing large numbers of TILs
can benefit from vaccination, or whether the presence of TILs
should be taken as evidence of vaccination in situ. Thus, the ratio-
nale design of a state-of-the-art vaccine must now take into account
recent data characterizing the interplay between a developing
tumor and the immune system, and in particular the predicted
differences in immune interactions between immunogenic and
non-immunogenic tumors (Fig. 1).

A number of recent reviews have unfortunately generalized

the failure of a number of vaccinations strategies, citing overall
response rates of only 3.3% in trials of over a thousand patients,
without emphasizing that 96% of the patients treated on these
trials had a single type of cancer; melanoma [22]. The scientific

http://www.cancerimmunity.org/peptidedatabase/Tcellepitopes.htm
http://www.cancerimmunity.org/peptidedatabase/Tcellepitopes.htm


in Imm

g
b
t
e
s
t
b
h
d
h
s
o
i
h
t
h
g

t
v
T
c
p
g
d
t
a
o
o
a
i

3

s
e
c
f
e
t
c
f
h
t
t
e
t
t
l
t
t
G
a
l
c
p

a
a
(
9
t
t
i

T.H. Schreiber et al. / Seminars

old-standard for statistical significance is met when the proba-
ility that an effect of an intervention is due to chance alone is less
han 5%; thus, overall response rates of 3.3% provide compelling
vidence that vaccination of patients with immunogenic tumors,
uch as melanoma, provides no significant benefit. This data raises
he likely possibility that the heavy bias toward melanoma in
oth experimental modeling and clinical trials has inadvertently
indered the success of some promising cancer vaccine candi-
ates. Furthermore the nature of the cancer drug approval process
as hindered the serious conduct of immune trials, with many
tudies of promising reagents aborted shortly after completion
f small Phase I studies without adequate power to demonstrate
mprovements in disease stabilization or survival. Hence studies
ave been inappropriately focused on a relatively immunogenic
umor (melanoma) and cellular and vaccine related therapies that
ave been Phase I tested in very few patients, often “die in early
estation” due to inadequate funding or trial design.

Most vaccine platforms (DNA vaccines, synthetic long pep-
ide vaccines, recombinant viral vaccines and most dendritic cell
accines) require the identification of individual ASAs and/or
SAs ahead of time so that they may be packaged into the vac-
ine formulation. Some more recent and unconventional vaccine
latforms (tumor-cell-based vaccines, purified autologous or allo-
eneic tumor heat-shock proteins and some dendritic cell vaccines)
epend upon the production of shared antigens between similar
umor cells and therefore do not require identification of tumor
ntigens in advance. The identification of tumor antigens ahead
f time is the fundamental difference between these two types
f vaccine designs, each of which have important and predictable
ttributes and drawbacks, which will be discussed in more detail
n the following sections.

. Prophylactic cancer vaccines

The molecular biology of cell division predicts that any per-
on who lived long enough without dying of another cause would
ventually develop cancer. Thus, in thinking about cancer vac-
ines it is important to emphasize that it is exceedingly unlikely
or any prophylactic cancer vaccine to be completely preventative,
ven for individual tumor types. In truth, it is actually a misnomer
o consider vaccines such as Cervarix and Gardasil prophylactic
ancer vaccines because they have so far proven completely inef-
ective at preventing cervical neoplasia once infection with the
uman papilloma virus is already established. These vaccines are
herefore proving highly effective at preventing infection with
he relevant HPV sub-types, which vastly reduces and perhaps
liminates the chances of developing cervical cancer, but the pro-
ective immunity engendered by HPV vaccines does not extend to
ransformed cells that are not actively infected with HPV. Regard-
ess, given the fact that 10–20% of all human tumors are thought
o be caused by microorganisms, it remains an important goal
hat vaccine development along the path paved by Cervarix and
ardasil continue, particularly for hepatocellular carcinoma (hep-
titis B virus), Kaposi’s sarcoma (human herpes virus 8), acute T
ymphocytic leukemia (human T-lymphotrophic virus 1), gastric
ancer (helicobacter pylori), nasopharyngeal and Burkitt’s lym-
homa (Epstein–Barr virus).

Development of prophylactic cancer vaccines against
utochthonous tumors, in which the antigens being targeted
re TSAs or ASAs that do not yet exist in the patient, still sits at

and may never leave) the starting block. Out of approximately
00 clinical trials with cancer vaccines open in the United States
oday, less than 100 will test prophylactic vaccines, and all of
hose open will determine the efficacy of HPV-directed vaccines
n preventing progression from cervical intraepithelial neoplasia
unology 22 (2010) 105–112 107

to cervical cancer. Unless a generic ‘cancer antigen’ is discovered,
which appears exceedingly unlikely, each hypothetical prophylac-
tic cancer vaccine would be specific for a particular type or small
sub-group of cancers. The antigens chosen for such vaccinations
would have to either be contained within the oncogenic ‘driver’
genes (and be shared between a substantial percentage of par-
ticular tumors) or within groups of ASAs commonly associated
with a particular cancer (fetal onco-antigens in melanoma for
example). If antigens were not available that were shared between
a substantial fraction of tumors in an at-risk population, such a
therapy would be impractical to implement on a large scale.

One setting where the development of prophylactic cancer vac-
cines requires urgent attention and testing is in the prevention of
cancer with a strong hereditary history. Cancers with a strong her-
itable basis include familial adenomatous polyposis, HER2/neu or
estrogen receptor positive breast cancer, breast and ovarian cancers
carrying BRCA-1 or -2 mutations and prostate cancer. To date, only
HER2/neu has emerged as a potential immunogen in the prevention
of these familial cancers, but others may soon follow. Importantly,
pre-clinical studies have demonstrated that vaccination against
HER2/neu with activated and antigen-loaded dendritic cells can
prevent the growth of HER2/neu positive tumors in HER2/neu tol-
erant mice [97]. Progression of these studies to the clinic will be
accompanied by significant safety concerns regarding the induction
of autoimmunity in cancer naïve people, however given the rising
incidence of prophylactic mastectomy in women with a strong fam-
ily history such studies are warranted. Evidence of a survival benefit
in high-risk patients with a HER2/neu vaccine would provide an
important step toward proving the potential of cancer prophylaxis.
A series of therapeutic cancer vaccines aimed at generating immune
responses against HER2/neu are now open, which may pave the
way for preventative trials in high-risk individuals with a positive
safety profile. However, the degree to which HER2/neu acts a driver
in the process of such tumor development remains unclear and
there likely is limited utility in vaccination against a single protein
which may not be an obligate element in hereditary oncogenesis.

Finally, two challenging but intriguing possibilities for future
prophylactic cancer vaccines are those targeting either telomerase
or oncofetal antigens. Many tumors are known to depend upon
telomerase for survival and many tumors are also known to upregu-
late oncofetal antigens. Since both telomerase and fetal antigens are
rarely expressed in adult tissues, it may be possible to induce immu-
nity to these antigens in adults without induction of autoimmunity.
Whether or not such immunity will be protective against multiple
cancers is unknown, but such studies have been initiated and may
provide important insights in the coming years [23–26]. Still the
widespread expression of telomerase in some rapidly dividing tis-
sues will continue to raise questions regarding whether or not it
provides a suitable antigenic target.

4. Therapeutic cancer vaccines

The vast majority of cancer vaccines in development and in clin-
ical trials are considered therapeutic vaccines, indicating that they
are designed for administration to patients already diagnosed with
cancer. To date, there has never been an FDA-approved therapeu-
tic cancer vaccine, although roughly 900 are currently in various
stages of clinical trials. The gap between the number of vaccines in
clinical trials and the number of approved therapeutic cancer vac-

cines is indicative of the overwhelming failure of these agents in
previous clinical trials. This is not to say that promising candidates
are not in the pipeline, however the climb to FDA approval is more
difficult as a result of prior failures, especially for projects seeking
financial support from skittish investors.
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Table 1
Summary of therapeutic cancer vaccine clinical trials reporting CR/PR/SD spanning September, 2007–September, 2009.

Type of cancer Vaccine category No. of patients
treated

No. patients in studies restricted to
stage III/IV disease/total no. of patients

CR or PR (%
RECIST response)

Stable disease (%
SD)

% CR/PR/SD

Melanoma Predicted antigen 313 58.1 28 (8.9%) 37 (11.8%) 20.8
Pan-antigen 215 92.6 9 (4.2%) 9 (4.2%) 8.4

NSCLC Predicted antigen 253 100 22 (8.7%) 86 (33.9%) 42.7
Pan-antigen 21 100 0 (0%) 14 (66.7%) 66.7

Colorectal Predicted antigen 139 100 42 (30.2%) 42 (30.2%) 60.4

Prostate Predicted antigen 48 56.3 0 (0%) 9 (18.75%) 18.75
Pan-antigen 80 100 0 (0%) 28 (35%) 35

Renal cell Predicted antigen 89 100 4 (4.5%) 42 (47.2%) 51.7
Pan-antigen 91 100 5 (5.5%) 45 (49.5%) 55
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Other solid tumors Predicted antigen 21 100
Pan-antigen 67 2.3

Hematologic tumors Predicted antigen 193 0

The failure of the majority of therapeutic cancer vaccines tested
o date is a reflection of the fact that the design of most of these vac-
ines preceded a mature understanding of the interaction between
eveloping tumors and the immune system. The, now widely
ccepted, immunosurveillance hypothesis predicts that tumorige-
esis may be accompanied by the acquisition of TSAs and ASAs
hat engage anti-tumor immune responses. There are three poten-
ial outcomes of an anti-tumor immune response: (1) the immune
esponse may destroy the tumor, particularly if the TSA or ASA is
biquitously expressed in tumor cells, (2) the immune response
ay eliminate TSA or ASA expressing tumor cells but not those

umor cells lacking a particular antigen, resulting in a transient
eduction in tumor volume followed by the outgrowth of a less-
ntigenic clone, (3) the tumor may co-opt immune suppressive
ells or factors to dampen the anti-tumor immune response, lead-
ng either to a protracted détente (equilibrium) or the induction of
mmune tolerance to the tumor antigens, permitting the tumor to
scape anti-tumor immunity. An important caveat to this model is
hat the random nature with which tumors acquire mutations, and
he fact that all tumors develop from cells to which the immune
ystem is initially tolerant, indicates that there will be a spectrum
n the immunogenicity of tumors; some of which may develop

ithout ever engaging anti-tumor immunity, some of which may
urvive a single ‘round’ of immunosurveillance and some of which
ay endure multiple ‘rounds’ of battle with the host immune sys-

em before developing into a clinically apparent malignancy. An
nderstanding of where individual tumor types tend to fall on this
pectrum of ‘tumor immunogenicity’ is vital to the logical design of
therapeutic cancer vaccine. In effect, a highly immunogenic tumor

hat has endured several rounds of immunosurveillance has already
accinated the host in situ, and as a result of its continued growth
as become less-susceptible to the benefits of therapeutic vaccines
ue to the establishment of tumor-induced immunosuppression.
lternatively, an immunogenic tumor could loose expression of a
SA or ASA following immunoselection of non-antigen expressing
umor cells, a process known as immunoediting, and revert to a
on-immunogenic state. There is mixed evidence on the prognos-
ic value of tumor infiltrating lymphocytes (TILs) in various tumors,
nless these TILs are further characterized as regulatory or effec-
or sub-types [27]. The presence of TILs is indicative that adaptive
mmunity has been enlisted at the tumor site, and that these TILs

ay not be able to prevent the growth of tumors [28]. Therefore,

he presence or absence of TILs within a progressively growing
umor provides a proxy for whether or not a developing tumor has
rovided the host with a “vaccination in situ”. Often times such a
accination process results in expansion of a tolerizing population
f T regulatory cells rather than a desired T effector population.
2 (9.5%) 10 (47.6%) 57.1
3 (4.4%) 6 (8.9%) 13.3

0 (0%) 10(5.2%) 5.2

Unfortunately, but understandably, the most highly immuno-
genic tumors are often those from which TSAs and ASAs are most
easily identified. The consequence of this ‘convenience’ is that
attempts at developing therapeutic cancer vaccines may have been
heavily skewed toward the types of tumors that are the least
likely to respond to vaccines. This bias is revealed by examining
the list of tumor antigens maintained by the Academy of Cancer
Immunology; roughly 55% of tumor antigens resulting from muta-
tions are specific to melanoma, roughly 34% of shared TSA are from
melanoma and roughly 58% of differentiation antigens found in
tumors are from melanoma. The effect of these discoveries at the
clinical level is revealed by the fact that of roughly 900 cancer vac-
cine clinical trials listed by the NIH, 22% are for melanoma vaccines;
despite the fact that melanoma comprises only 1–2% of the overall
cancer burden in the United States.

The reason that the majority of therapeutic cancer vaccine clin-
ical trials are for immunogenic tumors from which TSAs or ASAs
have been identified is because the majority of vaccine designs
require that antigens be identified ahead of time. This is an abso-
lute requirement for all DNA vaccines, peptide vaccines, synthetic
long peptide vaccines, fusion protein vaccines as well as some RNA
and dendritic cell vaccine platforms. Clinical responses with these
classes of vaccines are infrequent and when present lead to a tran-
sient reduction in tumor volume and marginally increased survival
time; with the majority of patients not responding.

Over the past 2 years (spanning September, 2007 through
September, 2009) there have been 64 publications of cancer vac-
cines tested in clinical trials. Of these, 73% have tested vaccines
targeting predicted antigen(s) and the remaining 27% have tested
“pan-antigen” vaccines by utilizing whole tumor cell-lysate prepa-
rations or whole tumor cells themselves. In accordance with
historical proportions, 25% of these trials have tested melanoma
vaccines [29–44], with the remaining 75% divided between: NSCLC
(9%) [45–50], colorectal (6%) [51–54], prostate (11%) [55–61], renal
cell (11%) [62–68], pancreatic (3%) [69,70], breast and ovarian (8%)
[71–75], hematologic (8%) [76–80] or others (19%) [81–92]. Out of
these publications, forty-two reported objective clinical responses
(complete responses or partial responses) as well as disease stabi-
lization (Table 1).

There are several common themes that emerge from clinical
studies testing predicted antigen cancer vaccines. First, exclud-
ing studies with concurrent vaccine and chemotherapy [48,49,52],

responses are only observed in a minority (0–8.9%) of patients. Sec-
ond, patients that respond (as defined by RECIST criteria) enjoy only
marginal increases in survival. Third, survival is rarely improved in
patients that did not mount a vaccine-specific immune response;
however vaccine-specific immune responses are not strongly pre-
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ictive of overall survival. Transient responses in a minority of
atients are predicted by both the frequency of shared antigens
etween related tumors and the cellular and genetic heterogene-

ty within individual tumors. An important confounding variable
n these studies is that most pre-select patients by histopathol-
gy to be highly positive for the tumor-antigen being delivered
n the vaccine; a bias that is reflective of the overall design of
ntigen-predictive vaccines. Interestingly, two high-profile reports
rom this cohort demonstrate that patients treated with antigen-
redictive vaccines have better responses if their tumors expressed

ow levels of the antigen being targeted rather than high levels
71,82]. Furthermore, another study has demonstrated a positive
orrelation between the number of antigens delivered in the vac-
ine and clinical responses to the vaccine [37].

An alternative to vaccines requiring the prediction and selec-
ion of individual tumor antigens are vaccines containing the full
epertoire of tumor antigens either within whole-cells or from
umor cell-lysate preparations. The potential advantage of such
an-antigen vaccines lies in the potential to induce multi-specific

mmunity against multiple tumor antigens. This type of response
ould simultaneously increase the proportion of patients that
espond to a vaccine, increase the magnitude of responses within
hose patients and decrease the chances of immune escape to
ntigen-loss variants. Pan-antigenic tumor vaccines can be divided
nto two groups; those that utilize autologous tissue in the vaccine
reparation and those that utilize allogeneic tissue. The benefit of
accines derived from autologous tissue is that there is a greater
ikelihood that many antigens will be shared between the vaccine
reparation and the patient than with allogeneic vaccines. The pit-
alls of autologous vaccines are that patients are only eligible to
eceive them if they are good surgical candidates, the time between
solation of tissue and delivery of the vaccine can be long and the
mount of tissue harvested from the patient restricts the dose and
uration of vaccine administration. Recent clinical studies utilizing
utologous material for vaccination reported attrition rates rang-
ng from 7 to 41% [40,64–66,87,88]. Both autologous and allogeneic
accines have and are currently being tested in cell-based, cell-
ysate and cell-lysate pulsed dendritic cell formulations.

Although limited in number, recent clinical experience with
an-antigen vaccines has yielded only infrequent objective
esponses (ranging from 0 to 5.6%). The majority of these stud-
es (84%) utilize either autologous DCs, autologous tumor cells,
utologous tumor cell lysates or purified proteins or a combination
hereof. Only two studies reported clinical response data utilizing
accines based on allogeneic tumor cells. Based on the limited num-
er of studies, there is not a clear benefit to either autologous or
llogeneic vaccine approaches based on RECIST criteria. The combi-
ation of the low response rates, high rates of attrition and selection
ias for autologous approaches may in fact point toward an overall
enefit of allogeneic vaccines if in the future no significant clinical
enefit using autologous vaccines is proven.

In addition to RECIST criteria, many therapeutic vaccine trials
eport disease stabilizations. It has been demonstrated that the
mmune system (and in particular CD4+ and CD8+ T cells) is capa-
le not only of eliminating tumors but also of reaching a point
f ‘equilibrium’ with a tumor in which the anti-tumor immune
esponse roughly balances the growth of the tumor, leading to a
stable’ lesion [7,93]. These studies have spurred the question of

hether a reasonable endpoint for cancer therapy is merely to
low or prevent disease progression, rather than always seeking
artial or complete regressions. This discussion also highlights a

ritical difference between expected outcomes following cancer
accine therapy and traditional cytostatic or cytotoxic chemo- and
adiotherapeutics, which is that the point of maximum benefit for
accine therapies rarely occurs immediately after administration of
he therapy (as it does for chemo-radiotherapy), but may instead
unology 22 (2010) 105–112 109

require a prolonged period of treatment and observation. Impor-
tantly, FDA stopping rules for cancer vaccine clinical trials currently
fail to account for this critical difference.

An analysis of disease stabilizations may be more instructive
for cancer vaccine therapies than for chemo- and radiotherapy
given the potential for lag-time between administration of the vac-
cine and the vaccine-induced immunological response. Using the
same set of publications over the past 2 years, 35 reported both
objective responses and disease stabilizations. If both objective
responses and disease stabilizations are grouped, outcomes using
predicted antigen vaccines improve significantly in all cancers
examined: melanoma (20.8% overall response), NSCLC (42.7% over-
all response), colorectal (60.4% overall response), prostate (18.7%
overall response), renal cell (51.7% overall response) and breast and
others (19.9%). The same trend was also true for pan-antigen vac-
cines: melanoma (8.4%), NSCLC (66.7%), prostate (35%), renal cell
(55%) and others (23.9%). Therefore, this cohort of studies suggests
that pan-antigen therapeutic vaccines might provide better over-
all outcomes than predicted antigen vaccines for NSCLC, prostate
cancer and renal cell cancer.

5. Tumor immunogenicity and combinatorial therapeutics

The recent clinical studies discussed above demonstrate the
heterogeneity in responsiveness of certain tumor types to vac-
cine therapy. Melanoma appears to be among the least responsive
to vaccine therapy while NSCLC and renal cell carcinoma are
among the most responsive. Interestingly, vaccine therapy alone
appears to be fairly effective at inducing disease stabilizations
but is poor at inducing objective clinical responses unless paired
with chemotherapy [48,49,52]. There are suggestions that follow-
ing therapeutic cancer vaccine therapy (‘prime’) with certain types
of traditional chemotherapy (‘boost’) may become an intriguing
and effective clinical regimen [94]. Regardless, the responsiveness
of established cancer to vaccine therapy is likely to be an integration
of the ability of a given vaccine to prime an appropriate immune
response against specific tumor antigens and the ability of the
tumor to suppress the anti-tumor immune response. As discussed
previously developing tumors fall on a spectrum of ‘immunogenic-
ity’, with the most highly immunogenic being identified by many
TILs and the least immunogenic by relatively few TILs. We propose
that the responsiveness of specific tumors to therapeutic cancer
vaccines is related to the degree of immunogenicity of a partic-
ular tumor, with the least immunogenic tumors being the most
responsive to cancer vaccines. Some recent clinical data conforms
to this model in suggesting that endogenous anti-tumor immune
responses are a negative prognostic factor for vaccine responses
[92]. Using the degree of TILs as a surrogate for immunogenicity,
we propose a framework for the application of therapeutic cancer
vaccines (Fig. 2).

The flow chart in Fig. 2 proposes that the primary immune
therapy for a given tumor should be decided based upon the
recognition of the tumor by an endogenous immune response. If
such a response exists, it suggests that the tumor is progressing
independent of such a response and that regulatory mechanisms
may be present that prevent an effective anti-tumor immune
response. Alternatively, the absence of TILs suggests that an anti-
tumor immune response is not present and that benefit may be
derived from activating such a response with a vaccine. Absence
of TILs perhaps implies a level of immunologic “ignorance” rather

than tolerance that might be reversed through vaccination. Except
for virus-associated tumors, pan-antigen vaccines are preferred
because for non-immunogenic tumors the tumor rejection anti-
gens are rarely known and for immunogenic tumors an endogenous
immune response against predicted antigens is likely to already
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Fig. 2. Proposed flow chart for the a

xist and may be unleashed by the primary therapy targeting reg-
latory mechanisms. Thus, the secondary therapy for non-viral

mmunogenic tumors should also be a pan-antigen vaccine in
rder to broaden the specificity of the endogenous anti-tumor
mmune response. It is also important to note that the list of regu-
atory networks to target is far from comprehensive and is meant

erely to provide some examples. Additional therapies that may
lso amplify both the endogenous and vaccine-induced anti-tumor
mmune response may include therapies that enhance the traffick-
ng of immune cells into the tumor microenvironment as has been
ecently suggested [95,96].

. Conclusions

Despite the many high-profile cancer vaccine failures over the
ast decade, the lack of an FDA-approved cancer vaccine and the
urdles that lie in wait, cancer vaccines are here to stay. In order
o avoid repeated failures, it is imperative that future studies and
linical trials be instructed both by laboratory and clinical data
hat the most convenient antigens to target and tumors to treat
re not always the best choices. Using melanoma as the exam-
le, it is clear that despite receiving a disproportionate share of
ffort, therapeutic melanoma vaccines do not perform as well as
herapeutic vaccines for NSCLC and renal cell carcinoma. This may
e related to the tendency for tumors such as melanoma to be
ighly immunogenic, capable of escaping an endogenous immune
esponse and thus more responsive to agents targeting immune
egulatory pathways than vaccines. A key question for both allo-
eneic and autologous vaccine approaches is the relative frequency
f shared antigens between related tumors. So far, TCGA suggests

hat somatic mutations are rarely shared between related tumors,
owever it remains unclear whether the majority of tumor rejec-
ion antigens arise from somatic mutations themselves or from
bnormal self-antigens generated by the dysregulation of common
athways by somatic mutations. Thus, both basic and clinical stud-

[

[

[

tion of therapeutic cancer vaccines.

ies in tumor immunology must continue to occur in parallel so that
they may instruct one another as to the appropriate tumors and
approaches to target with cancer vaccines. It is equally important
for the evaluation of future therapeutic cancer vaccine clinical trials
that the FDA consider the biological differences between traditional
cytotoxic therapies and cancer immune therapies such that cutting
edge evaluation criteria may be applied to cutting edge vaccines.
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