

RESONANT OVERVIEW

- Validated robust technology and IP portfolio
 - ISN® (Infinite Synthesized Networks) multi-physics full-chip simulation platform
 - >200 patents filed or issued, >50 for high-frequency 5G-targeted devices
- Demonstrated first filters known to achieve wide bandwidth required by 5G and Wi-Fi 6
- Foundry Program enables new entrants gain access to the filter market
 - 9 foundry partners creating opportunities

ADDRESSING LARGE AND GROWING RFFE MARKET

- \$28B filter market expected in 2025
 - Fastest growing segment of the RF Front-End (RFFE) market
 - Streaming video driving the need for increased bandwidths and higher frequencies

¹ Sources: Projections based on Yole Developpement, Navian, Barclays, Infineon Technologies, Qorvo, Resonant Management estimates.
² Sources: Yole Developpement, Navian, Includes filters in all RFFE components (e.g., filters, duplexers, diplexers, multiplexers, etc.)

THE IMPORTANCE OF FILTERS

US frequency spectrum allocation

A unique filter is required for each band of operation

BAND PASSING

Requirements

- Low loss → Critical for range (dropped calls), battery life, heating, and data throughput
- High rejection → Mandatory to eliminate interference from other bands which drops calls and cuts data throughput

DISRUPTIVE TECHNOLOGY DRIVES GROWTH

RESONANT'S ISN

- ISN EDA platform revolutionizes filter design through full-chip, multi-physics complete simulation
- Streamlined design process creates complex filters required for both the 4G and 5G markets
- No comparable acoustic wave filter design EDA platform exists in the market today

Previous design method

- Iterative process adapts existing design to fit new requirements
- Multiple fab cycles resulting in months/years of lead time for standard RF filters
- 5G filters are more complex further increasing time to market

TIME CONSUMING ITERATIVE MANUAL PRODUCTION PROCESS

Design method using ISN

- Manufactured in half the time and half the cost
- Uses faster and more accurate circuit models and physical models
- Results in superior performance

NIMBLE, LOWER COST, SUPERIOR PERFORMANCE

THE THREE WAVES OF 5G

WAVE 2 REQUIRES WIDE BANDWIDTH - HIGH REJECTION - HIGH FREQUENCY FILTERS

RESONANT'S XBAR® PROPRIETARY RESONATOR STRUCTURE

- XBAR is Resonant's revolutionary BAW resonator structure produced using standard SAW processes
 - Designed specifically to meet the exacting demands of 5G and Wi-Fi coexistence
 - Provides 3-4x larger native bandwidth than competing SAW and BAW technologies
 - Expected to outperform all other resonators in critical 5G and Wi-Fi frequencies >3 GHz
- Demonstrated better insertion loss, rejection levels, and wider passbands
 - Compared against today's 4G BAW and FBAR technologies

XBAR FILTERS REALIZE THE FULL 5G AND WI-FI POTENTIAL

WIDE BANDWIDTH XBAR DESIGNS ENABLED BY ISN

ACCURATE AGREEMENT BETWEEN MEASURED AND MODELED DATA USING ISN

October 2018

MEASUREMENT

SIMULATION

FIRST DEMONSTRATION OF VERY LARGE BANDWIDTH CAPABILITY REQUIRED FOR 5G

LOOKING BACK ONE YEAR: INITIAL XBAR RESULTS

February 2019, MWC

MEASUREMENT

- First acoustic filter to demonstrate bandwidth of ~600 MHz at 5 GHz
- 1.5 dB minimum insertion loss with real matching applied

1ST ACOUSTIC FILTER TO DEMONSTRATE BANDWIDTH OF ~600 MHz AT 5 GHz (>10% BANDWIDTH)

RAPID EVOLUTION ENABLED BY ISN

MEETING 5G REQUIREMENTS

Requirements – n79

- ✓ Wide Bandwidth: 600 MHz
- ✓ Rejection to interferers: >30 dB to Wi-Fi
- ✓ Spur-free passband
- ✓ Low Loss: 1 dB center-band loss
- ✓ High Power: >31 dBm

ENGAGED WITH WORLD'S LARGEST FILTER MANUFACTURER

FEMIDS (Front-End Module with Integrated Duplexers)

5 COMPANIES MAKE UP 80% OF THE FILTER AND DUPLEXER MARKETS

MODULE GROWTH HAS BEEN SHIFTING DUE TO RECENT MACRO ECONOMIC EVENTS

ENABLED BY XBAR HIGH-FREQUENCY, WIDE-BANDWIDTH (>10%) CAPABILITY

5G AND WI-FI COEXISTENCE PROBLEM

LOOMING INTERFERENCE CHALLENGE

Problem:

- 5G (sub 6 GHz) and
 5 GHz / 6 GHz Wi-Fi need
 to operate together in
 5G phones and
 infrastructure
- Massive potential interference problem

Requirements:

- Large bandwidths
- High isolation/rejection
- Low loss
- High Power
- Small and thin die size

Significantly different from 4G¹

COEXISTENCE OF 5G AND WI-FI REQUIRES HIGH PERFORMANCE FILTERS

XBAR 6 GHz FULL-BAND WI-FI ACOUSTIC FILTER

February 2020

LATEST RESULT

- Measured 1.1 GHz bandwidth centered at 6.5 GHz
 - 17% bandwidth
 - Nearly double 2019 results
- Minimum loss < 1.0 dB
- Rejection > 40 dB across neighboring Wi-Fi spectrum

FIRST ACOUSTIC WI-FI BANDPASS FILTER DEMONSTRATING GREATER THAN 1 GHz BANDWIDTH

XBAR WI-FI DIPLEXER

XBAR Wi-Fi Diplexer Structure:

- Enables Maximum Bandwidth
- Rejection to each band for simultaneous operation
- Low passband Insertion Loss
- Wide bandwidth capability of XBAR is the key

ENABLES MAXIMUM POSSIBLE BANDWIDTH IN A SINGLE DEVICE

IN SUMMARY

- User demand for increasing data through-put is driving 5G and Wi-Fi to higher frequencies and wider bandwidths
- Coexistence of 5G and Wi-Fi is an emerging and large challenge to real-world deployments
- Utilizing ISN, Resonant has developed the breakthrough XBAR resonator structure to address these demands
- XBAR provides a unique, best-in-class solution to enable co-existence of these systems through low-loss, wide-bandwidth, high rejection filtering
- Engineering samples to be provided to customers mid-2020

THANK YOU

