

H₂S Case Study

produced water

The objective of this pilot study was to treat

specifically for Hydrogen

the findings of this pilot,

eliminate H2S and allow

produced fluid. The

process.

our customer to reuse this

customer had traditionally

disposed of this fluid but would prefer to reuse it once treated through the Ozonix®

FNES processed approximately 300 barrels ("bbl") of the produced water with an

EF10 Ozonix[®] treatment unit. The fluid was batched treated over a period of five and one

quarter (5.25) hours, with samples taken at

approximately every twenty (20) minutes.

FNES validated the

Ozonix® treatment

system's ability to

Sulfide (" H_2S "). Based on

Successfully Treated H₂S in Produced Fluid

BACKGROUND

DATE: May 2014

EQUIPMENT:

EcosFrac 10 BPM ("EF10")Ozonix® Units

FORMATION:

Permian Basin (NM)

FLUID TYPE:

Produced Water

VOLUME:

~300 barrels

TREATMENT RATE:

~10 BPM batch treatment

FNES measured H₂S concentration in each sample immediately on-site, using an instrument that had an upper limit of 80 mg/L. Using these readings FNES can calculate reaction rates and initial concentrations up to approximately 769 mg/L.

In addition to testing for H₂S, FNES also tested the Friction Reduction using a typical anionic friction reducer. The produced fluid treated through the Ozonix® treatment unit demonstrated a 19% improvement in drag reduction, proving that FNES treated fluid improves compatibility with friction reducers.

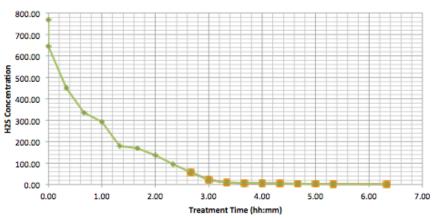


Figure 1: Hydrogen Sulfide Concentration Results

Treatment Time	S ² as H ₂ S				
0.00	769				
0.00	645				
0.33	451				
1.00	293				
1.33	180				
2.00	137				
2.33	95				
3.00	22.16				
3.33	9.12				
4.00	5.78				
4.33	4.42				
5.00	3.07				
6.33	1.04				

Water Type	% Drag Reduction				
Treated	57				
Untreated	38				

Figure 3: Friction Reducer Compatibility Results Mixed with 0.5 gpt Anionic FR

Figure 2: Summary of Calculated
H2S Results in mg L-1

TDS	рН	TOC	Alk as CaCO3	Cl	Ва	Ca	Fe	Mg	K	Na	Sr	Oil & Grease
210,000	7.0	22	550	100,000	0	3,000	0.5	660	490	77,000	62	40

Figure 4: Representative Influent Water Analytics of Produced Water

