Pharmacokinetics, Safety, and Tolerability of Seladelpar in Subjects with Hepatic Impairment

Mao Z., Martin R., Steinberg A., Rohane P., Nguyen J., Stanzen M., Boudes P.
CymaBay Therapeutics, Newark, CA

Background
- Primary biliary cholangitis (PBC) is a rare, idiopathic autoimmune disease of the liver characterized by an inflammatory destruction of intrahepatic bile ducts that leads to chronic cholestasis.
- The disease can progress to cirrhosis, particularly if patients do not respond adequately to ursodeoxycholic acid (UDCA), the first-line treatment for PBC.
- Seladelpar, a selective peroxisome proliferator-activated receptor alpha (PPAR-α) agonist, has demonstrated potent anticholestatic and anti-inflammatory activity in phase 2 studies of patients with PBC, with or without cirrhosis.
- Patients with PBC progress to cirrhosis, so it is important to evaluate candidate treatments in patients with impaired hepatic function, as drug exposure may be altered in this population.
- We have reported the pharmacokinetics (PK) of seladelpar in patients with hepatic impairment (HI) compared with healthy volunteers.

Objective
- To evaluate the PK and safety of a single oral 10 mg dose of seladelpar in subjects with varying degrees of HI vs matched control subjects with normal hepatic function.

Methods
- Subjects with normal hepatic function and subjects with mild (class A), moderate (class B), or severe (class C) HI, as defined per Child-Pugh (CP) score, were enrolled (Table 1).
- Subjects with normal hepatic function were required to have normal serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin levels.
- Subjects with mild, moderate, and severe HI, as defined according to Table 1, were included in each of 4 groups: healthy subjects with normal hepatic function, CP-A HI, CP-B HI, and CP-C HI.
- Subjects with normal hepatic function were matched to those with CP-B HI based on gender, body mass index, and age.
- All enrolled subjects received a single oral dose of 10 mg seladelpar at Day 1 of the study.
- PK parameters analyzed: Cmax (ng/mL), AUC0–τ (ng·h/mL), Vz/F, CL/F, λz, and t1/2.
- Safety/tolerability parameters assessed: Physical examination findings, vital signs, 12-lead electrocardiograms (ECGs), clinical laboratory findings (hematologic, clinical chemistry, and urinalysis), monitoring of adverse events (AEs).
- Analysis datasets:
 - Analysis dataset
 - PK Analysis Set: included all subjects who underwent plasma PK sampling and had evaluable PK assay results.
 - Safety Analysis Set: included all subjects who received 10 mg seladelpar.

Results
- Demographics and Baseline Characteristics: Table 2
 - Subjects in the HI cohorts had a medical history consistent with chronic liver disease. These conditions included alcoholic cirrhosis, hepatitis C, NAS, and PBC.

Pharmacokinetics
- Figure 2: Seladelpar Mean Plasma Concentrations over Time
 - Thirty-nine of the 32 subjects completed the study; 1 subject in the CP-B HI group withdrew due to a family emergency*.
 - Exposure (Cmax, AUC0–τ, AUCinf) (Table 3, Figure 3):
 - CP-B HI vs normal hepatic function: no significant difference in Cmax, AUC0–τ, or AUCinf.
 - CP-B or CP-C HI vs normal hepatic function: -5-fold increase in Cmax and -2-fold increase in AUC0–τ and AUCinf.
 - Terminal elimination phase half-life (t1/2) (Table 3): mean t1/2 in subjects with CP-A, CP-B, or CP-C HI ranged from 6.2 to 7.2 hours; this was comparable with mean t1/2 in normal subjects.
 - Mean apparent clearance (CL/F) (Table 3): CP-B or CP-C HI vs normal hepatic function: CL/F decreased by ~50%.

Safety
- No deaths or treatment-emergent adverse events (TEAEs) that led to withdrawal or hospitalization were reported.
- Overall, 8/32 subjects had ≥1 TEAE (12 TEAEs in total): 2 subjects with normal hepatic function, 3 subjects with CP-A HI, 1 subject with CP-B HI, and 2 subjects with CP-C HI.
- TEAEs were reported in 1 subject except for fatigue (occurred in 2 subjects).
- Three treatment-emergent adverse events (TEAEs) in 3 subjects with CP-A HI: gastroesophageal reflux disease, diarrhea, and arthralgia.
- No serious AEs or deaths were reported.
- All TEAEs were mild in severity, except for 1 case of severe SAE: esophageal varices hemorrhage. This occurred in a subject with CP-C HI and a history of recurrent bleeding from esophageal varices. This event was considered unlikely to be related to seladelpar by the investigators.
- No relevant changes in mean vital signs, 12-lead safety ECG parameters, physical examination findings, or mean laboratory values were observed.

Discussion
- Mean seladelpar exposure (Cmax and AUC) was not significantly altered in subjects with CP-A HI compared with healthy subjects.
 - Notably, seladelpar exposure was similar between subjects with CP-B HI and CP-C HI.
 - Mean t1/2 did not appear to be impacted by the degree of HI.
 - Mean seladelpar clearance (CL/F) decreased with increasing HI.
 - Seladelpar appeared to be safe and well tolerated in subjects with varying degrees of HI.
 - All TEAEs were mild except for a severe SAE of esophageal varices hemorrhage, which was consistent with the patient’s previous history (recurrent bleeding from esophageal varices).

Conclusions
- Single-dose administration of seladelpar appeared to be safe and well tolerated in subjects with varying degrees of HI.
- Compared with healthy controls, CP-A HI did not significantly change the PK of seladelpar, and dose adjustments in this population do not appear necessary.
- Given the magnitude of the increases in seladelpar exposure in subjects with CP-B and CP-C HI, further characterization of dose exposure in PBC patients with or without cirrhosis may be warranted.

Acknowledgement of Contributors
We gratefully acknowledge study participants and site study staff for their contribution to the study.

References